
The influence of quantum degeneracy and irreversibility on the performance of a Fermi

quantum refrigeration cycle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 7485

(http://iopscience.iop.org/0305-4470/37/30/007)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/30
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 7485–7497 PII: S0305-4470(04)75361-5

The influence of quantum degeneracy and
irreversibility on the performance of a Fermi
quantum refrigeration cycle

Yue Zhang1, Bihong Lin1,2 and Jincan Chen1

1 Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China
2 Department of Physics, Quanzhou Normal University, Quanzhou 362000,
People’s Republic of China

E-mail: jcchen@xmu.edu.cn

Received 29 January 2004, in final form 3 June 2004
Published 14 July 2004
Online at stacks.iop.org/JPhysA/37/7485
doi:10.1088/0305-4470/37/30/007

Abstract
An irreversible cycle model of the quantum refrigeration cycle using an ideal
Fermi gas as the working substance is established. The cycle consists of two
adiabatic and two isobaric processes and consequently may be simply referred
to as the Fermi Brayton refrigeration cycle. The performance of the cycle is
investigated, based on the equation of state of an ideal Fermi gas. Expressions
for several important performance parameters, such as the coefficient of
performance, work input and refrigeration load, are derived. The influence
of the quantum degeneracy of the Fermi gas and the irreversibility in the cycle
on the performance of the Fermi Brayton refrigeration cycle is analysed. The
minimum pressure ratio of the cycle is determined. The optimally operating
problems of the cycle and several special cases are discussed in detail. The
results obtained here are general and may reveal the general performance
characteristics of the Fermi Brayton refrigeration cycle.

PACS numbers: 05.70.−a, 07.20.Mc, 44.90.+c

1. Introduction

The classical ideal gas equation of state is one of the important equations of classical
thermodynamics. It has been widely used to analyse the performance of thermodynamic
cycles. However, when the temperature of the gas is low enough or its density is high
enough, the gas will deviate from its classical behaviour and the quantum degeneracy of
the gas becomes important [1–3]. Under these conditions, the gases obey Bose–Einstein or
Fermi–Dirac statistics and are called ideal quantum gases. Obviously, the performance of the
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Figure 1. The temperature–entropy diagram of an irreversible Brayton refrigeration cycle.

cycle using an ideal quantum gas as the working substance is different from one of the cycles
working with a classical ideal gas. Thus, the performance analysis of quantum thermodynamic
cycles has become an interesting research subject [2–9].

In recent years, several authors have investigated, respectively, the performance of
quantum refrigeration [2, 6, 7, 9] and power cycles [4, 5, 8] using the Bose or Fermi gases
as the working substance and many meaningful conclusions have been obtained. However,
these investigations are mainly concentrated on the influence of the quantum degeneracy on
the performance of reversible thermodynamic cycles working with quantum gases, while
the influence of the irreversibility in the quantum gas thermodynamic cycle has rarely been
considered. Practical cycles are always irreversible. In order to understand more deeply the
performance of a quantum refrigeration cycle, we will investigate the influence of both the
quantum degeneracy of the gas and the irreversibility of the cycle on the performance of a
quantum Brayton refrigeration cycle working with an ideal Fermi gas in this paper. It can
be expected that some more general and useful results, which may reveal the performance
characteristics of an irreversible Fermi quantum Brayton refrigeration cycle, are obtained.

2. An irreversible quantum refrigeration cycle

A Brayton refrigeration cycle using an ideal Fermi gas as the working substance is composed
of two adiabatic and two isobaric processes. Figure 1 shows the temperature–entropy diagram
of the cycle, where the two nearly vertical dashed lines indicate two irreversible adiabatic
processes, PH and PL are the pressures of the high and low constant-pressure processes,
QH and QL are the amounts of heat exchanged between the working substance and the
heat reservoirs at temperature TH and TL during the two constant-pressure processes, T1S

and T3S are the final temperatures of the reversible adiabatic expansion and compression
processes, and T1 and T3 are the final temperatures of the irreversible adiabatic expansion and
compression processes. It should be pointed out that TH and TL are also the temperatures of the
working substance at the beginning of the expansion and compression processes, because the
irreversibility of heat transfer between the working substance and the external heat reservoirs
has not been taken into account in this cycle model.

In the performance analysis of a Brayton refrigeration cycle, it will be significant to
discuss the influence of irreversibility in the working substance because the processes in a real
cycle are always irreversible. According to figure 1, we may introduce the compression and
expansion efficiencies [10–13]

ηc = T3S − TL

T3 − TL

(1)
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and

ηe = TH − T1

TH − T1S

(2)

to describe the irreversibility of the cycle. When ηc = 1 and ηe = 1, the compression and
expansion processes become reversible. It is clear that the cycle model established here is
more general, so that the reversible model of the Brayton refrigeration cycle is only a special
case of the present model.

3. Several important parameters

In order to obtain the expressions for several important parameters of the cycle, we first
calculate the heat capacity CP at constant pressure of an ideal Fermi gas. According to
statistical mechanics, the expressions of the pressure, number density, internal energy and
entropy for an ideal Fermi gas are given by [14, 15]

P = gkT

λ3
f5/2(z) = nkT F(z), (3)

n = N

V
= g

λ3
f3/2(z), (4)

U = 3

2
NkT F(z) (5)

and

S = Nk
[

5
2F(z) − ln(z)

]
, (6)

respectively, where k is the Boltzmann constant, g is a weight factor that arises from the
‘internal structure’ of particles (in this paper, we adopt g = 1), T , N and V are, respectively, the
gas temperature, total number of particles and volume, z = eβµ and λ = h/(2πmkT )1/2 are,
respectively, the fugacity of the gas and the mean thermal wavelength of particles, β = 1/(kT ),
µ is the chemical potential of the gas, h is Planck’s constant, m is the rest mass of a particle,
fl(z) = 1

�(l)

∫ ∞
0

xl−1

z−1 ex+1 dx is called the Fermi function, �(l) is the Gamma function, and
F(z) = f5/2(z)/f3/2(z) can be called the correction function. When F(z) = 1, an ideal Fermi
gas becomes an ideal classical gas. Using equations (3)–(6), the heat capacities at constant
volume and at constant pressure can be, respectively, expressed as

CV = 15

4
Nk

f5/2(z)

f3/2(z)
− 9

4
Nk

f3/2(z)

f1/2(z)
= 3

2
Nk

d

dT
[T F(T , P )] (7)

and

CP = CV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

= 5

2
Nk

d

dT
[T F(T , P )], (8)

where F(T , P ) is a function of temperature and pressure.
On the other hand, for an ideal Fermi gas, the ratio of the entropy S of the system to

the total number of particles N is only a function of the ratio of the chemical potential µ to
temperature T , i.e. S/N = ϕ(µ/T ). During an isentropic process, the values of µ/T and z

remain unchanged because S and N are unchanged [15]. Using the property of the isentropic
processes and equation (6), one can obtain

F(PL, TL) = F(PH , T3S), F (PL, T1S) = F(PH , TH ). (9)
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Using equation (3) again, one can obtain

T3S

TL

= TH

T1S

=
(

PH

PL

)2/5

= r
2/5
P , (10)

where rP = PH/PL is the pressure ratio of two constant-pressure processes. From
equations (1), (2) and (10), one can further obtain

T1 = TH

[
1 − ηe

(
1 − 1

/
r

2/5
P

)] = THX, T3 = TL

[
1 +

(
r

2/5
P − 1

)/
ηc

] = TLY, (11)

where X = 1 − ηe

(
1 − 1

/
r

2/5
P

)
and Y = 1 +

(
r

2/5
P − 1

)/
ηc.

Using equations (8) and (11), one can find that the amounts of heat exchanged in the two
constant-pressure processes mentioned above are, respectively, given by

QH =
∫ T3

TH

CP dT = 5

2
Nk[TLYF(TLY, PH ) − THF(TH , PH )] (12)

and

QL =
∫ TL

T1

CP dT = 5

2
Nk[TLF(TL, PL) − THXF(THX,PL)]. (13)

For a Brayton refrigeration cycle, the refrigeration load is determined by equation (13), while
work input, W , of the cycle and the coefficient of performance (COP), ε, are expressed as

W = QH − QL = 5
2NkTH [τYF(TLY, PH ) − F(TH , PH ) − τF (TL, PL) + XF(THX,PL)]

(14)

and

ε = QL

W
= τF (TL, PL) − XF(THX,PL)

τYF(TLY, PH ) − F(TH , PH ) − τF (TL, PL) + XF(THX,PL)
, (15)

respectively, where τ = TL/TH is the temperature ratio of two heat reservoirs. Equations (13)–
(15) show that the refrigeration load, work input and COP of the cycle are functions of
the temperatures of the heat reservoirs, pressures of the constant-pressure processes and
compression and expansion efficiencies. Starting from these equations, we can discuss the
performance of a Fermi Brayton refrigeration cycle.

In addition, in order to compare the performance of an irreversible quantum Brayton
refrigeration cycle with that of an irreversible classical Brayton refrigeration cycle using an
ideal gas as the working substance, we introduced a relative refrigeration load as

RQL = QL

QC
L

= τF (TL, PL) − XF(THX,PL)

τ − X
, (16)

where QC
L = 5

2NkTH (τ − X) is the refrigeration load of an irreversible classical Brayton
refrigeration cycle using an ideal gas as the working substance and will be given in
equation (32). It should be noted that equations (13) and (16) and other equations derived
from the two equations are independent of the compression efficiency.

4. Performance characteristics

Using equations (13)–(16) and assuming 3He as the working substance, one can generate the
Q∗

L ∼ rP , W ∗ ∼ rP , ε ∼ rP , ε ∼ Q∗
L and RQL ∼ rP characteristic curves of the cycle for

a set of given parameters (TL = 5 K, τ = 0.25, PL = 0.5 MPa), as shown in figures 2–6,
where Q∗

L = 2QL/(5NkTH ) and W ∗ = 2W/(5NkTH ) are, respectively, the dimensionless
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Figure 2. The Q∗
L–rP curves, where Q∗

L = 2QL/(5NkTH ) is the dimensionless refrigeration
load and the parameters TL = 5 K, TH = 20 K and PL = 0.5 MPa are adopted. Curves a, b and c
correspond to the cases of ηe = 1.00, 0.97 and 0.94, respectively.
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Figure 3. The W ∗–rP curves, where W ∗ = 2W/(5NkTH ) is the dimensionless work input. The
values of the parameters TL, TH and PL are the same as those used in figure 2. Curves a, b, c,
b′ and c′ correspond to the cases of ηe = ηc =1.00, 0.97, 0.94, ηe = 0.97 and ηc = 0.94, and
ηe = 0.94 and ηc = 0.97, respectively.

refrigeration load and work input. Curves a, b, c, d, e, f, b′ and c′ correspond to the cases of
ηe = ηc = 1.00, 0.97, 0.94, 0.999, 0.995, 0.99, ηe = 0.97 and ηc = 0.94, and ηe = 0.94 and
ηc = 0.97, respectively.

It is clearly seen from figures 2 that when rP � (rP )min, the refrigeration load is smaller
than or equal to zero and consequently the Brayton cycle cannot play a refrigeration role.
Thus, the pressure ratio must satisfy the following relation:

rP > (rP )min (17)

whose value is dependent on the temperatures of the heat reservoirs, pressures of the constant-
pressure processes and expansion efficiencies and may be determined from equation (13), as
listed in table 1. It is also seen from figure 2 that the minimum pressure ratio (rP )min increases
as the irreversibility in the cycle increases.

Figure 3 clearly shows that the dimensionless work input W ∗ is a monotonically increasing
function of rP for given TL, TH , PL, ηe and ηc. Comparing figures 2 and 3, we can easily find
that when rP = (rP )min, the refrigeration load is equal to zero while the work input is still
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Figure 4. The ε–rP curves. The values of the parameters TL, TH and PL are the same as those
used in figure 2. Curves a, b, c, d, e, f, b′ and c′ correspond to the cases of ηe = ηc =1.00, 0.97,
0.94, 0.999, 0.995, 0.99, ηe = 0.97 and ηc = 0.94, and ηe = 0.94 and ηc = 0.97, respectively.

0.000 0.025 0.050 0.075
0.0

0.1

0.2

0.3

Q

ε

L
 *

a

d

e

f

b

c
b' c'

Figure 5. The ε–Q∗
L curves. The values of the parameters TL, TH , PL, ηe and ηc are the same as

those used in figure 4.
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Figure 6. The RQL–rP curves. The values of the parameters TL, TH , PL and ηe are the same as
those used in figure 2.

larger than zero except for the special case when ηe and ηc are equal to 1. It is seen from the
curves in figure 3 that the smaller the compression and expansion efficiencies are, the larger the
work input. This implies that the work input increases with an increase in the irreversibility
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Table 1. The minimum pressure ratio for different given parameters.

ηe τ (rP )min

0.25 32.00

1.00
0.35 13.80
0.45 7.36
0.55 4.46

0.25 34.56

0.99
0.35 14.47
0.45 7.60
0.55 4.55

0.25 40.82

0.97
0.35 16.00
0.45 8.11
0.55 4.75

0.25 54.44

0.94
0.35 18.92
0.45 9.02
0.55 5.10

of the cycle. Obviously, the performance of the cycle can be improved by increasing the
compression and expansion efficiencies. Moreover, comparing the curves b′ and c′ in figure 3,
one can find that the influence of the compression efficiency on the work input is more obvious
than that of the expansion efficiency.

It is clearly seen from the curves in figure 4 that for an irreversible Fermi Brayton
refrigeration cycle, there exists an optimal value rPm of the pressure ratio at which the
coefficient of performance attains its maximum εmax, as shown in the curves b, b′, c, c′, d,
e and f in figure 4; while for a reversible Fermi Brayton refrigeration cycle, the coefficient
of performance decreases monotonically with the pressure ratio rP , as shown in curve a in
figure 4. The smaller the compression and expansion efficiencies are, the larger the pressure
ratio rPm at the maximum coefficient of performance. When the compression and expansion
efficiencies are high and tend to 1, the corresponding pressure ratio rPm is larger than (rP )min,
but close to (rP )min. In such a case, when ε < εmax, there are two different pressure ratios
for a given coefficient of performance ε, where one is smaller than rPm and the other is larger
than rPm. It is further seen from figures 4 and 5 that when rP < rPm, the coefficient of
performance decreases quickly as the refrigeration load decreases. It is thus clear that the
region of rP < rPm is not reasonable for an irreversible Fermi quantum Brayton refrigeration
cycle with high compression and expansion efficiencies. Consequently, the reasonable region
of the pressure ratio should be

rP > rPm. (18)

This indicates that rPm is an important parameter for an irreversible Fermi quantum Brayton
refrigeration cycle. It determines the allowable value of the lower bound of the optimal
pressure ratio. On the other hand, when the compression and expansion efficiencies are not
high enough, rPm � (rP )min so that rPm may be too large to be practical. In this case, the
pressure ratio should not be required to be situated in the region determined by equation (18).
In addition, it can be found by comparing curves b′ and c′ in figure 4 that the influence of
the expansion efficiency on the coefficient of performance is more obvious than that of the
compression efficiency.



7492 Y Zhang et al

0.3 0.4 0.5
0.0

0.1

0.2

0.3

Q

τ

L*

a

b

c

Figure 7. The Q∗
L–τ curves for given pressure PL = 0.5 MPa and pressure ratio rP = 60. The

values of the parameters TH and ηe are the same as those used in figure 2.
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Figure 8. The W ∗–τ curves for given pressure PL = 0.5 MPa and pressure ratio rP = 60. The
values of the parameters TH , ηe and ηc are the same as those used in figure 4.

It is seen from figure 6 that RQL is always less than 1 and decreases quickly as the pressure
ratio rP increases. This implies the fact that the refrigeration load of an irreversible quantum
Bratyon refrigeration cycle working with a Fermi gas is always less than that of an irreversible
classical Bratyon refrigeration cycle working with an ideal gas. The curves in figure 6 clearly
show that the influence of quantum degeneracy on the relative refrigeration load RQL increases
as the expansion efficiency increases. When ηe = 1, the relative refrigeration load RQL is
only affected by the quantum degeneracy. In general, the relative refrigeration load RQL is
affected not only by the quantum degeneracy but also by the expansion efficiency. When the
expansion efficiency is small, the influence of quantum degeneracy is not dominant so that
there is a large relative refrigeration load because the refrigeration load of a classical Brayton
cycle is also affected by the irreversibility of the expansion process.

Similarly, equations (13)–(16) can be used to plot the Q∗
L ∼ τ , W ∗ ∼ τ , ε ∼ τ and

RQL ∼ τ characteristic curves of the cycle for given parameters TH , PL, rP , ηe and ηc, as
shown in figures 7–10, respectively. It is clearly seen from the curves in figures 7–10 that the
dimensionless refrigeration load Q∗

L and work input W ∗, coefficient of performance ε (except
for the case of ηe = ηc = 1) and relative refrigeration load RQL are monotonically increasing
functions of the temperature ratio τ of the two heat reservoirs for a set of given parameters TH ,
PL, rP , ηe, and ηc. The curves in figures 7–10 also show that the larger the irreversibility in the
cycle is, the smaller the dimensionless refrigeration load Q∗

L and coefficient of performance
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Figure 9. The ε–τ curves. The values of the parameters PL, rP , TH , ηe and ηc are the same as
those used in figure 8.
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Figure 10. The RQL–τ curves. The values of the parameters PL, rP , TH and ηe are the same as
those used in figure 7.

ε, while the larger the dimensionless work input W ∗ and relative refrigeration load RQL. This
indicates that the influence of irreversibility in the working substance on the performance of
the cycle is remarkable. Moreover, it can be seen from figure 9 that when ηe and/or ηc are
smaller than 1, the coefficient of performance ε is dependent not only on the pressure but also
on the temperature, as shown in the curves b, b′, c and c′ in figure 9. This is different from
the case of ηe = ηc = 1, in which the coefficient of performance is only dependent on the
pressure, as shown in the curve a in figure 9. Figures 8 and 9 also show that for any value of
τ , the influence of the compression efficiency on the work input is more obvious than that of
the expansion efficiency while the influence of the expansion efficiency on the coefficient of
performance is more obvious than that of the compression efficiency.

5. Several special cases

It is significant to note that for some special cases, the results obtained above may be simplified.

5.1. Strong gas degeneracy

Under the low-temperature and high-density conditions (i.e. the condition of strong gas
degeneracy), the Fermi function can be expanded in powers of ln z, i.e. [14]
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fn(z) = (ln z)n

�(n + 1)

{
1 + n(n − 1)

π2

6

(
1

ln z

)2

+ n(n − 1)(n − 2)(n − 3)
7π4

360

(
1

ln z

)4

+ · · ·
}

.

(19)

Starting from equation (19), we can derive the first approximation of the correction function
F(z) = f5/2(z)/f3/2(z) as [2]

F(T , P ) = 2

5

AP 2/5

T
+

π2

10

T

AP 2/5
, (20)

where A = (15π2h̄3)2/5/(2km3/5). By using equation (20), equations (13)–(17) may be,
respectively, simplified as

QL = Nkπ2

4A
P

−2/5
L T 2

H (τ 2 − X2), (21)

W = QH − QL = Nkπ2

4A
P

−2/5
H T 2

H

[
(τY )2 − 1 − r

2/5
P (τ 2 − X2)

]
, (22)

ε = QL

QH − QL

= r
2/5
P (τ 2 − X2)

(τY )2 − 1 − r
2/5
P (τ 2 − X2)

, (23)

RQL = QL

QC
L

= π2TL(τ + X)

10AτP
2/5
L

(24)

and

rP > (rP )min =
(

ηe

ηe + τ − 1

)5/2

. (25)

Equation (25) shows that the minimum pressure ratio (rP )min is only dependent on the
temperature ratio of the heat reservoirs and expansion efficiency and independent of the
compression efficiency because it is derived from equation (13).

5.2. Weak gas degeneracy

Under the higher temperature and lower density condition (i.e. the condition of weak gas
degeneracy), the Fermi function can be expanded [14]

fn(z) =
∞∑
l=1

(−1)l−1 zl

ln
(26)

and the first approximation of the correction function can be expressed as [2]

F(T , P ) = 1 + BP/T 5/2, (27)

where B = (2πh̄2/m)3/2/(4
√

2k5/2). By using equation (27), equations (13)–(16) can be,
respectively, simplified as

QL = 5

2
NkTH

{
τ − X +

(
τBPL

/
T

5/2
L

)
[1 − (τ/X)3/2]

}
, (28)

ε = QL

QH − QL

= τ − X +
(
BPLτ

/
T

5/2
L

)
[1 − (τ/X)3/2]

τY − τ + X − 1 +
(
τBPL

/
T

5/2
L

)
[rP (Y−3/2 − τ 3/2) − 1 + (τ/X)3/2]

,

(29)
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W = 5

2
NkTH

{
τY − τ + X − 1 +

(
τBPL

/
T

5/2
L

)
[rP (Y−3/2 − τ 3/2) − 1 + (τ/X)3/2

}
, (30)

and

RQL = τ − X +
(
τBPL

/
T

5/2
L

)
[1 − (τ/X)3/2]

τ − X
. (31)

It can be proved from equation (28) that equation (25) is still true in this case.

5.3. High-temperature limit

When the temperature of the gas is high enough and its density is low enough, the fugacity
of the gas z is much smaller than unity. In such a case, fl(z) = z, F(T , P ) = 1 and an ideal
Fermi gas becomes an ideal classical gas. Equations (13)–(16) can be, respectively, simplified
as

QL = 5

2
NkTH (τ − X) ≡ QC

L, (32)

W = 5

2
NkTH (τY − 1 − τ + X), (33)

ε = QL

QH − QL

= τ − X

τY − τ + X − 1
(34)

and

RQL = 1, (35)

while equation (25) is also true. In this case, we can further calculate

rPm =
(

ηe + a

ηe + τ − 1

)5/2

(36)

from equation (34), where a = [ηe(ηc − ηcηe + τ − ηcτ )(1/τ − 1)]1/2.

5.4. ηe = ηc = 1

When the irreversibility of two isentropic processes is negligible, ηc = ηe = 1.
Equations (13)–(17) can be, respectively, simplified as

QL = 5

2
NkTH

[
τF (TL, PL) − r

−2/5
P F (TH , PH )

]
, (37)

W = 5

2
NkTHF(TH , PH )

[
τr

2/5
P

F (TL, PL)

F (TH , PH )
− 1

] (
1 − r

−2/5
P

) = QL

(
r

2/5
P − 1

)
, (38)

ε = 1

r
2/5
P − 1

, (39)

RQL = τr
2/5
P F (TL, PL) − F(TH , PH )

r
2/5
P (τ − X)

(40)

and

rP > (rP )min = (f/τ)5/2, (41)

where f = F(TH , PH )/F (TL, PL). It is clearly seen from equation (39) that the coefficient
of performance ε is only a function of the pressure ratio rP , which is the same as that of the
Brayton refrigeration cycle using an ideal classical gas as the working substance.
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Figure 11. The Q∗
L–rP curves for given parameters TL = 210 K, TH = 300 K and PL = 0.5 MPa.

Curves a, b and c correspond to the cases of ηe = 1.00, 0.97 and 0.94, respectively.
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Figure 12. The ε–rP curves for given parameters TL = 210 K, TH = 300 K and PL = 0.5 MPa.
Curves a, b and c correspond to the cases of ηe = ηc = 1.00, 0.97 and 0.94, respectively.

In the high temperature limit, f = 1. Consequently, the minimum pressure ratio,
(rP )min = (

rc
P

)
min = τ−5/2, can be derived from equation (41), where (rP )cmin is the minimum

pressure ratio in the two constant-pressure processes of a classical Bratyon refrigeration cycle.

6. Discussion

It should be pointed out that the performance of a Fermi quantum refrigeration cycle is
dependent on the choice of the working substance. However, using the above equations
and same method, we can discuss the performance of the Fermi quantum refrigeration cycle
working with other working substances, besides 3He. For example, when the ideal electron
gas is used as the working substance, its quantum effect is still obvious at room temperatures.
In such a case, the ideal electron gas is of strong degeneracy and the low-temperature and
high-density conditions is still satisfied. Consequently, equations (20)–(25) may be directly
used to discuss the performance of the refrigeration cycle working with an ideal electron gas.
Thus, using equations (21) and (23), one can generate the Q∗

L ∼ rP and ε ∼ rP characteristic
curves of the cycle for given parameters TL = 210 K, TH = 300 K and PL = 0.5 MPa,
as shown in figures 11 and 12. These curves in figures 11 and 12 clearly show that the
performance characteristics of the cycle working with an ideal electron gas are similar to those
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of the cycle using 3He as the working substance, although the values of the various parameters
in the different refrigeration cycles are different from each other. If one considers the electron
gas in a simple metal at room temperatures as the working substance, the pressures in the
cycle are very large. Using the method mentioned above, one can obtain similar performance
characteristic curves and results.

7. Conclusions

The influence of the quantum degeneracy of the Fermi gas and the irreversibility of the
working substance in the cycle on the performance of the Brayton refrigeration cycle using
an ideal Fermi gas as the working substance has been analysed in detail. Expressions for
several important parameters are derived and some curves, which can reveal the performance
characteristics of the cycle, are presented. It is found that the influence of the quantum
degeneracy of the Fermi gas on the minimum pressure ratio is negligible, and consequently
the minimum pressure ratio is determined by equation (25). However, the influence of
the irreversibility of the working substance in the cycle on the minimum pressure ratio is
remarkable. The larger the irreversibility is, the larger the minimum pressure ratio. Because
of the influence of the quantum degeneracy, the refrigeration load of an irreversible Fermi
quantum Bratyon refrigeration cycle is always less than that of an irreversible classical Bratyon
refrigeration cycle. Moreover, the reasonably operating region of the pressure ratio and the
various interesting problems of the cycle are discussed in detail. The results obtained here will
be helpful to further understand the general performance characteristics of the Fermi Brayton
refrigeration cycle.
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